بسم الله الرحمن الرحیم
ابن هیثم، ابوعلی
اِبْنِ هِیْثَم، ابوعلی حسن (محمد؟) بن حسن (حسین؟) بن هیثم بصری، ریاضیدان برجسته و بزرگترین فیزیکدان و نورشناس مسلمان سده 4ق/10م که در آثار لاتینی سدههای میانه به آونتان یا آوناتهان و بیشتر به آلهازن نامبردار است.
زندگی و آثار: به رغم شهرت عظیم ابن هیثم، اطلاعات مبسوطی درباره دورانهای مختلف زندگی، خاصه تحصیلات و استادان او در دست نیست. آنچه در اینباره میدانیم، غالباً روایاتی است که حدود 3 قرن پس از او، قفطی (د 646ق/1248م) از یوسف فاسی (د 624ق/1227م) نقل کرده (ص 167) و گاه با آنچه اندکی دیرتر، ابن ابی اصیبعه (د 668ق/1270م) با تفصیل بیشتر و با استناد به نوشته خود ابن هیثم آورده و نیز روایات بیهقی و شهر زوری، متناقض است.
ابن هیثم اصلاً از بصره برخاست (قفطی، 165؛ ابن ابی اصیبعه، 2/90) و باتوجه به آنکه در 417ق/1026م و در 63 سالگی رسالهای نوشت که ابن ابی اصیبعه آن را به خط خود او دیده بوده (2/91)، میبایست در 354ق زاده شده باشد. به روایت همو، ابن هیثم چنانکه خود اشاره کرده، پس از مشاهده اختلاف مردم در راههای وصول به حقیقت، به بررسی آراء و عقاید گوناگون برای یافتن راهی مطمئن به سوی حق پرداخته و چون طرفی بر نبسته، سرانجام به این اعتقاد گرویده که جز از طریق دانشی که عنصرش امور حسی و صورتش امور عقلی باشد ــ یعنی طبیعیات و الهیات و منطق ــ نمیتوان به حق دست یافت (2/91-92). چنین مینماید که وی از این پس، به تحصیل علوم طبیعی و فلسفی همت گماشت، اگرچه به مراتب تحصیلی خود هیچ اشارهای نکرده است.
به روایت شیخ علمالدین قیصر بن ابیالقاسم مهندس، ابن هیثم در بصره ــ که در آن سالها زیر فرمان آل بویه عراق بود ــ شغلی دیوانی داشت که از آن به وزارت بصره تعبیر شده است و چون پرداختن به علم را از آن کار دوستتر میدانست، سرانجام تظاهر به جنون کرد تا وی را عزل کردند و وی سپس به مصر رفت (همو، 2/90). به گفته قفطی (ص 166، 167) سفر ابن هیثم به مصر به تشویق و وعده الحاکم فاطمی فرمانروای مصر روی داد و البته بعید نیست که ابن هیثم اصلاً به امید اجرای طرح خود برای تنظیم آب نیل و برخورداری از کرم الحاکم آن تمهید را اندیشیده باشد. چه، به روایت همو، خلیفه فاطمی پس از اطلاع از این طرح، مالی برای ابن هیثم به آن دیار رسید، خلیفه خود به استقبال او بیرون شد و دانشمند را گرامی داشت. ابن هیثم اندکی بعد در رأس گروهی از مهندسان به بررسی نیل و مجرای آن در بخش مرتفع جنوب مصر پرداخت، اما با مشاهده آثار و ابنیهای که مصریان براساس طرحهای دقیق هندسی ساخته بودند، دریافت که اگر اجرای طرحی که او در اندیشه داشت، ممکن بود، این مصریان فرهیخته دانا به هندسه و ریاضیات، البته پیشتر به آن دست میزدند.
بررسی چگونگی مرتفعات اسوان که نیل از آن میگذرد، نیز این نتیجهگیری را تأیید کرد. از اینرو نزد خلیفه به ناکامی خود اعتراف کرد. ظاهراً خلیفه واکنش تندی از خود نشان نداد، اما چنین مینماید که از این ناکامی چندان خشمناک شده بود که ابن هیثم را به جای آنکه در جایی چون دارالحکمه قاهره، در کنار کسانی مانند ابن یونس منجم به کار بگمارد، به شغلی دیوانی گماشت. ابن هیثم با آنکه از بیم این فرمانروای خونریز، به این شغل گردن نهاد، ولی برای رهایی از آن چاره در این دید که باز تظاهر به جنون کند. از اینرو خلیفه اموال او را مصادره کرد و کسی را به قیمومتش گماشت و در خانهاش محبوس کرد. چون الحاکم درگذشت (411ق/1020م)، ابن هیثم نیز از تظاهر به جنون دست برداشت و آزاد شد و اموالش را باز پس گرفت. وی نزدیک الازهر قاهره مقام گزید و بقیه عمر را به تدریس و تألیف سپری کرد و از طریق استنساخ کتاب روزی خود را به دست میآورد (ابن ابی اصیبعه، 2/91).
بیهقی بر آن است که ابن هیثم رسالهای درباره تنظیم آب نیل نوشت و به مصر رفت، اما الحاکم از همان آغاز ورود او، پس از بررسی طرح مذکور، آن را کم فایده و پرهزینه خواند و با ابن هیثم درشتی کرد. ابن هیثم از بیم خلیفه شبانه به شام گریخت و به خدمت یکی از امرای آن دیار درآمد به رغم بخششهای این امیر به مختصری قناعت کرد و یکسره به کارهای علمی پرداخت (ص 78)، اما شهرزوری (2/30) پس از تکرار سخن بیهقی، به نقل روایت دیگری میپردازد که بر پایه آن، ابن هیثم نخست در شام میزیسته و از آنجا به مصر رفته است. از سوی دیگر به نظر نمیرسد که ابن هیثم همه عمر را پس از مرگ الحاکم در قاهره مانده باشد. چه، از پاسخی که به یک سؤال هندسی در 418ق در بغداد داده (ابن ابی اصیبعه، 2/97)، معلوم میشود که لااقل در آن سال در بغداد بوده، ولی دوباره به مصر بازگشته، زیرا قاضی ابوزید عبدالرحمن بن عیسی او را در 430ق/1039م در آن دیار دیده بوده است (صاعد اندلسی، 60).
از تاریخ درگذشت ابن هیثم اطلاعی در دست نیست. غالب نویسندگان مرگ او را در حدود سال 430ق یا پس از آن در قاهره دانستهاند (مثلاً: عبن عبری، 183). قفطی (ص 167) یادآوری کرده که رسالهای به خط او دیده شده که تاریخ 432ق بر آن کتابت شده بوده است. به گفته بیهقی (ص 80) چون به سختی بیمار شد و دانست که عمرش به سر آمده، خود روی به کعبه خوابید و ذکر حق گفت و درگذشت.
ابن هیثم به روزگاری برآمد که اوج شکوفایی علوم در تمدن اسلامی به شمار است. وی از میراث علمی عظیمی که از تمدنهای کهنتر به جهان اسلام راه یافته و به دست دانشمندان برجستهای شرح و بسط داده شده بود، بهرهها برد.
ابن هیثم را باید پیشرو دانشمندان اهل تجربه و آزمایش به معنای دقیق آن خواند. زیرا وی در نظریات علمی خود، بهویژه در بررسیهای نورشناسی و مسأله اِبصار، به درستی از استقراء و تمثیل و قیاس سود میجست. چنانکه گفتهاند، در به کارگیری روش استقراء علمی، گذشته از تقدم زمانی بر فرانسیس بیکن، دیدگاهی وسیعتر و عمیقتر از او نیز داشته است (نظیفبک، 1/31-33). وی علاوه بر ریاضیات و نورشناسی، در فنونی چون کلام، مابعدالطبیعه، منطق، اخلاق، ادب و موسیقی ماهر بود و خاصه در قوانین نظری و امور کلی پزشکی دستی قوی داشت، ولی به طبابت نپرداخت (ابن ابی اصیبعه، 2/90، 92، 93). بیهقی او را بطلمیوس ثانی لقب داده و از زهد دینداری او یاد کرده است (ص 77، 79؛ نیز نک : ابن ابی اصیبعه، 2/90).
از میان شاگردان ابن هیثم، در طول سالهایی که به تدریس اشتغال داشت، فقط دو تن را میشناسیم: ابوالوفاء مبشر بن فاتک، دانشمند مشهور مصری که نزد ابن هیثم به تحصیل ریاضی پرداخت (همو، 2/98-99) و یکی از بزرگان سمنان به نام سرخاب (سهراب) که 3 سال نزد او شاگردی کرد و استاد هر ماه 100 دینار از او میگرفت، اما چون درس به انجام رسید، ابن هیثم همه آنچه را که گرفته بود، به سرخاب باز پس داد و یادآور شد که مراد او از این کار، آزمایش خلوص شاگرد در دانشاندوزی بوده است (بیهقی، 78-79).
ابن هیثم به زبان عربی مسلط بود و خطی خوش داشت (ابن ابی اصیبعه، 2/90). کتابهایی که وی استنساخ میکرد، گذشته از خط خوش، از دقت علمی بسیار نیز برخوردار بود و طالبان این کتابها مبالغ زیادی در ازای آن میپرداختند (قفطی، همانجا).
آثار: اگرچه ابن هیثم از دانشمندان کثیرالتألیف به شمار است، ولی حجم بسیاری از آثار او در فنون مختلف از چند برگ تجاوز نمیکند. او در نخستین مرحله تألیف، آثار متقدمان را شرح یا تلخیص میکرد. گاه نیز به رد آراء یکی و دفاع از دیگری میپرداخت، مانند رساله فی بطلان مایراه المتکلمون من أن اللـه لم یزل غیرفاعل ثم فعل و الرد علی یحیی النحوی مانقضه علی ارسطو طالیس و غیره من اقوالهم فی السماء و العالم. برخی دیگر از آثار او مانند استخراج سمت القبله و استخراج مابین بلدین فی البعد بجهه الامور الهندسیه منطبق با نیازهای علمی جامعه است، اما مهمترین و برجستهترین آثار خود مانند المناظر را در سومین دوره زندگی پس از مرگ الحاکم فاطمی و اشتغال مجدد به تدریس و تصنیف نوشته است (ابن ابی اصیبعه، 2/94-95؛ نظیف بک، 1/13-15).
ابن هیثم در رساله علوم الاوائل، آثار خود را تا 417ق، 70 رساله بر شمرده (25 اثر در ریاضیات، 44 اثر در طبیعیات و الهیات و یک اثر در علوم اوائل) و گویا اینها بجز رسائلی بوده که مردم اهواز و بصره از او در دست داشتند (ابن ابی اصیبعه، 2/93-96). در جمادیالآخر 419 او خود در دنبال آثار پیشین در همان کتاب، نام 21 اثر دیگر او را تا آخر 429ق/1038م گرد آورده و همه این 92 اثر را تقریباً به ترتیب زمانی مرتب کرده است (صبره. 190). بعضی از مقالات و رسایل ابن هیثم از یک سده پیش به این طرف توسط محققان مسلمان و اروپایی تجزیه و تحلیل و ترجمه و منتشر شده است. چند اثر از مهمترین آثار او از این قرار است:
1. آله لفحص الضوء و انکساره. این رساله را ویدمان از متن لاتینی به آلمانی ترجمه و در 1884م در «اخبار فیزیک » منتشر کرده است. سزگین مجدداً همین مقاله را در جلد اول مجموعه مقالاته ویدمان به چاپ رسانیده است.
2. استخراج ارتفاع القطب علی غایه التحقیق. نسخههای متعددی از آن در کتابخانهها موجود است (GAS, V/366, VII/411؛ بخیت، 3/129؛ ورهووه، 188). کارل شوی آن را بررسی کرده و نتیجه این بررسی را در جلئ اول مجموعه مقالات خود به چاپ رسانده است.
3. استخراج اعمده الجبال، که نسخهای از آن ضمن مجموعهای در بادلیان نگهداری میشود (بخیت، 3/128-129).
4. استخراج سمت القبله فی جمیع المسکونه بجداول و صفتها و لم اورد البرهان علی ذلک. نسخی از آن در لنینگراد و بادلیان موجود است (همو، 3/129؛ خالدوف، I/457). این مقاله را کارل شوی بررسی و در 1921م در «مجله انجمن خاورشناسی آلمان » منتشر کرده است. سزگین نیز بعداً همین مقاله را در جلد اول مجموعه آثار شوی منتشر کرد.
5. مقاله مختصره فی الاشکال الهلالیه و مقاله مستثصاه فی الاشکال الهلالیه، که نسخههای متعددی از این دو رساله در لنینگراد و و اداره هند لندن، برلین شرقی و مونیخ نگهداری میشود (خالدوف، GAL, I/618; GAS, V/365-366, VII/411; I/453).
6. اضواء الکواکب. نسخههایی از این اثر در کتابخانهها موجود است (آلوارت، GAS, VI/259; V/155). این رساله را ویدمان در 1890م بررسی و به اختصار به آلمانی ترجمه و در «هفتهنامه ستارهشناسی... » منتشر کرده است. سزگین بعداً همان را در جلد اول مجموعه مقالات ویدمان چاپ کرده است. در 1957م نیز در حیدرآباد دکن به چاپ رسیده است.
7. برکار الدوائر العظام یا استعمال برجل (برکار) لرسم الدوائر العظام، که نسخههای متعددی از آن موجود (خالدوف، GAS, V/370; I/452). این مقاله را ویدمان بررسی و در 1910م در «مجله مساحی » منتشر کرده است. سزگین همین مقاله را بعداً در جلد اول مجموعه مقالات ویدمان چاپ کرده است.
8. تربیع الدائره، که زوتر آن را همراه با ترجمه آلمانی در 1899م در «مجله ریاضیات و فیزیک» منتشر کرد. سزگین بعداً همن رساله را در 1986م در جلد دوم مجموعه مقالات زوتر چاپ کرد.
9. حرکه القمر. نسخههایی از این اثر در استانبول، بادلیان و لنینگراد موجود است (خالدوف، GAS, VI/257; I/457).
10. حل شکوک حرکه الالتفاف. ابن هیثم این رساله را در جواب ایرادهایی نوشت که به رساله او موسوم به حرکه الالتفاف وارد کردند (از خود رساله مذکور هیچ نشانی در دست نیست). عبدالحمید صبره این رساله را با خلاصهای به زبان انگلیسی در مجله تاریخ العلوم العربیه (حلب، 1979م، ج 3، شم 2) چاپ کرده است.
11. رساله فی صوره الکسوف، که نسخههایی از آن در بادلیان، لندن، استانبول و لنینگراد موجود است (خالدوف، همانجا؛ GAS, VI/252؛ بخیت، همانجا). مقدمه این رساله را ویدمان به آلمانی ترجمه کرده و روشن ساخته است که نخستین کاربرد تاریکخانه در تاریخ نورشناسی از سوی ابن هیثم صورت گرفته است. این مقاله در 1910م در «سالنامه عکاسی» منتشر شد. سزگین نیز بعداً آن را در جلد اول مجموعه مقالات ویدمان چاپ کرد.
12. رساله فی مساحه المجسم المکافی، که یکی از مهمترین آثار ریاضی اسلامی است (نک : بخش تجزیه و تحلیل برخی از آثار ابن هیثم در همین مقاله).
13. الضوء، که نخستینبار توسط بارمن ترجمه و در 1882م در «مجله انجمن خاورشناسی آلمان»، چاپ شد. ویدمان نیز تحریر همین رساله را که توسط کمالالدین فارسی (د 720ق/1320م) انجام شده است، بررسی و در همان مجله منتشر کرد. بعداً سزگین همان را در جلد اول مجموعه مقالات ویدمان چاپ کرد. این رساله ابن هیثم همچنین در 1969م در مقالات ابن هیثم، به مناسبت جشن هزاره او، به کوشش احمد اللـه ندوی در پاکستان منتشر شد. در 1983م نیز در حیدرآباد دکن همراه مجموع الرسائل ابن هیثم چاپ شد.
14. ضوء القمر، ابن رضوان پزشک مشهور مصری در 422ق آن را برای خود استنساخ کرد و از اینجا پیداست که در ایام خود مؤلف این اثر شهرتی یافته بوده است (قفطی، 444). این رساله نیز در مقالات ابن هیثم به کوشش نعیمالدین زبیری منتشر شد.
15. المرایا المحرقه بالدوائر، که توسط وینتر و عرفات به انگلیسی ترجمه و تجزیه و تحلیل و در 1950م در «مجله انجمن سلطنتی آسیایی بنگال » چاپ شده است. در 1983م نیز در مجموع الرسائل در حیدرآباد دکن به چاپ رسید.
16. المرایا المحرقه بالقطوع، که توسط وینتر و عرفات به انگلیسی ترجمه شد و ضمن نشر در «مجله انجمن سلطنتی آسیایی بنگال» مورد تجزیه و تحلیل قرار گرفت. در 1969م نیز در مقالات ابن هیثم به کوشش علی ناصر زیدی در پاکستان چاپ شد و در 1983م در حیدرآباد دکن نیز در مجموع الرسائل ابن هیثم منتشر گردید.
ویدمان هر دو رساله پیش را بررسی و با نام «تاریخ آیینههای سوزان» در 1890م در «اخبار فیزیک» منتشر کرده است. سزگین بعداً همین بررسی را در جلد اول مجموعه مقالات ویدمان چاپ کرد.
17. المناظر، معروفترین کتاب ابن هیثم شامل 7 مقاله است. نسخههای متعددی از آن در کتابخانهها موجود است. ترجمه لاتینی این کتاب در قرون وسطی، تأثیر عمیقی در دانش غربی نهاد و پیشرفت عظیمی را در روش تجربی به بار آورد (سارتن، 1/827). این کتاب توسط کمالالدین فارسی با عنوان تنقیح المناظر لذوی الابصار و البصائر نقد و تهذیب شده در حیدرآباد (1347-1348ق) در 2 مجلد به چاپ رسیده است. ویدمان چند فصل اول کتاب تنقیح المناظر را به آلمانی ترجمه و با عنوان «نورشناسی ابن هیثم » در 1912م در مجله «آرشیو تاریخ علوم طبیعی... » منتشر کرد. این مقاله بعداً توسط سزگین در جلد اول مجموعه مقالات ویدمان چاپ شده است. همچنین ویدمان بخشی دیگر از تنقیح المناظر کمالالدین را ترجمه کرده که در جلد اول مجموعه مقالات وی چاپ شده است.
18. الشکوک علی بطلمیوس. در این اثر ابن هیثم 3 کتاب بطلمیوس یعنی المجسطی، الاقصاص و المناظر را مورد ارزیابی و نقد قرار داده است. وی به رغم اعتراف به مقام علمی «مردی که به فضلیت مشهور و در ریاضیات متبحر است»، تصریح میکند که «در کتابهای وی مواضع شبههناک و الفاظ نادرست و معانی متناقض یافته است، گرچه این موارد در قیاس با معانی درست کتابهای وی اندک است» (ابن هیثم، 4). این اثر در 1971م به کوشش عبدالحمید صبره و نبیل شهابی در قاهره به چاپ رسیده است.
19. مقاله فی هیئه العالم. ابن هیثم خود این اثر را در شمار مؤلفات طبیعی ـ الهی خویش نهاده است (ابن اصیبعه، 2/94). دو ترجمه عبری از این مقاله در دست است و 3 ترجمه لاتین آن نیز شناخته شده است که یکی از آنها از یک ترجمه اسپانیایی که اکنون در دست نیست، برگردانده شده است. در سده 6ق نیز محمد بن احمد خَرَقی شرحی به زبان عربی بر آن نوشت. در نیمه دوم سده 8ق/14م میرسید شریف جرجانی آن را به فارسی ترجمه و شرح کرد. بخشی از آن (درباره زمین) در 1909م از سوی ویدمان به آلمانی ترجمه شد. کول نیز بخش دیگری از آن را درباره اجرام آسمانی و حرکات آنها در 1922م به همین زبان برگرداند (شرام، 6, 15, 63-64؛ زرکلی، 5/317؛ لوت، 734).
به گفته شتاین شنایدر، ابن هیثم رسالهای نیز در فضیلت مطلق دانش داشته و آنچه ابن ابی اصیبعه درباره او و تألیفاتش آورده، از همین رساله نقل شده است (نک : شرام، 9)، اما شواهد صحت این استنباط را نفی میکند.
مآخذ: در پایان مقاله
سیدصادق سجادی
جایگاه ابن هیثم در تاریخ علم: خاورشناسان اروپایی به پژوهشهای گستردهای درباره آثار ابن هیثم پرداخته و با ابراز شگفتی بسیار تواناییهای این دانشمند نوآور را تحسین کرده و مقام او را در تاریخ علم بسیار والا شمردهاند. تا پایان سده 19م وی بیشتر به دلیل آثارش در نورشناسی مورد ستایش قرار میگرفت، اما وقتی کسانی چون ویدمان، زوتر، شوی، شرام و نیز مصطفی نظیف بک به بررسی و معرفی مفصلتر آثار او پرداختند، آشکار شد که ابتکار حل شماری از مسائل دشوار ریاضیات نیز از آن اوست.
کارل شوی در مقدمه ترجمه رساله استخراج سمت القبله درباره وی گوید: نوشتههای ابن هیثم نشان میدهد که این دانشمند، با تبحر بسیار توانسته است مسائل دشوار مثلثات را نیز از راههای صرفاً هندسی حل کند (ص 243-244؛ نیز نک : GAS, V/362). سارتن وی را بزرگترین نماینده روح تجربی در سدههای میانه خوانده است (1/797). ماتیاس شرام استعداد نبوغآمیز ابن هیثم را در ریاضیات میستاید و در شرح ابن هیثم بر مجسطی و نیز حل الشکوک فی کتاب المجسطی، بر مطالبی که برای ارزیابی ابن هیثم به عنوان ریاضیدان مناسب یافته، تأکید ورزیده است. همو، پژوهشهای ابن هیثم در نورشناسی را نیز گواه بر استعداد فوقالعاده وی در ریاضیات میشمارد. به گفته وی گرچه ابن هیثم، همانگونه که در شرح سلوک علمی خویش آورده، نخست پیرو ارسطو بوده است، اما پژوهشهای وی در علوم دقیقه و تعمق پیرو ارسطو بوده است، اما پژوهشهای وی در علوم دقیقه و تعمق او در فلسفه و ریاضیات موجب شد که از آن عقیده نخستین برگردد و بدینسان، شیوه علمی ابن هیثم، از اعتبار احکام جزمی ارسطو کاست.
ابن هیثم مبتکر روشهای تجربی است و آزمایش علمی به عنوان یکی از وسایل سیستماتیک کار، دستاورد ابن هیثم است. تحول جهشوار دانش نورشناسی در آثار مربوط به مکتب اکسفورد، تا حدود زیادی مرهون آشنایی با منابع عربی و بهویژه آثار ابن هیثم بوده است. شرام با بررسی تفصیلی 3 اثر از ابن هیثم، یعنی ضوء القمر، المناظر و هیئه العالم، بر آن است که ابن هیثم کوشیده است میان طبیعیات ارسطویی از یک سو و ریاضیات به کار رفته در ستارهشناسی و نورشناسی کهن، پیوندی برقرار سازد و این تلاش، بهویژه در 3 کتاب یاد شده، نمونهوار است (شرام، 3-8, 14؛ نیز نک : GAS, V/364).
راجر بیکن، دانشمند انگلیسی سده 13م در تحقیقات علمی خویش از نتایج پژوهشها و آزمایشهای ابن هیثم استفاده فراوان برده است، کاربرد ریاضیات در پژوهشهای مربوط به علوم طبیعی، از جمله شیوههایی است که راجربیکن را پایهگذار آن میشناسند، در حالی که استفاده از ریاضیات در دانشهای طبیعی از سوی ابن هیثم بهویژه در المناظر و المرایا المحرقه به روشنترین وجه و بسیار جدیتر از آنچه بیکن انجام داده، صورت گرفته است (ویدمان، II/771).
خاورشناسان دقت ابن هیثم را در مقاله الشکوک علی بطلمیوس ستودهاند. در این اثر، وی تفاوتها و تناقضات میان دو اثر نجومی بطلمیوس، یعنی المجسطی و الاقتصاص را آشکار میسازد و نظریات دقیقتری را عرضه میدارد. همچنین در فی هیئه العالم میکوشد آنچه را بطلمیوس در الاقتصاص ناتمام گذارده، تکمیل کند (صبره، «س ـ ص»؛ GAS, V/362). تحول دانش ستارهشناسی در مغرب زمین، بیش از همه مدیون این کتاب است. هارتنر ثابت کرده است که نظریه سیارات نو که در سده 15م از جانب پورباخ بیان شده، در اساس چیزی جز تکرار نظریه ابن هیثم نبوده است. نظریه سیارات نو، به نوبه خود بزرگترین تأثیر را بر روی کپرنیک، رکیومونتان و راینهولد باقی گذارد (شرام، GAS, VI/251; 63-64).
پژوهشهای ابن هیثم درباره نور ماه، از نظر کول که رساله ضوء القمر را به آلمانی ترجمه کرده، نخستین تلاش در جهت یک تحقیق جامع فیزیک نجومی به شمار می آید و این واقعیت که ابن هیثم در این اثر، با ابزارهای آزمایش به پژوهش در اشعه ماه پرداخته و نخستینبار از ـتاریکخانه» استفاده کرده، جایگاه او را به عنوان پژوهشگر طبیعی، بلکه پایهگذار روش نوین پژوهش طبیعت، نشان میدهد (GAS, VI/253).
مآخذ: در پایان مقاله.
بخش علوم
تجزیه و تحلیل برخی از آثار ابن هیثم: رساله فی مساحه المجسّم المکافی، یکی از مهمترین آثار ریاضی اسلامی است. در این رساله ابن هیثم روش افناء را برای پیدا کردن حجمهایی که برخی از آنها (مسائل 4، 5 و 6 در این مقاله) تا زمان خود او محاسبه نشده بودند، به کار برده است. به این ترتیب ابن هیثم قادر شد که در محاسبه حجم حاصل از دوران، محور دوران را برای اولینبار بهطور دلخواه انتخاب کند. قبل از ابن هیثم، ارشمیدس مسائل 1، 2 و 3 را که ذیلاً درباره آنها صحبت میشود، با روش افناء (گرچه کمی متفاوت با روش ابن هیثم) حل کرده بود.
قابل ذکر است که به احتمال زیاد دانشمندان اسلامی از جمله ابن هیثم از نسخهای که ارشمیدس درباره روش افناء نوشته بود، نسخه مربوط به شبهمخروطها و شبکهکرهها، اطلاعی نداشتند، چون در هیچیک از منابع اسلامی ذکری از آن نشده است.
تکامل روش افناء درواقع منجر به نظریه انتگرال گردید که پایه مهم کاربرد ریاضیات در مسائل عملی و نظری است.
ابن هیثم راجع به تحقیقات ثابت ابن قره و ابوسهل کوهی در این رساله صحبت کرده است. وی به صراحت گفته است که آن دو فقط راجع به مسائل 1، 2 و 3 بحث کردهاند.
این رساله بین سالهای 1911-1912م توسط هاینریش زوتر به آلمانی ترجمه و تجزیه و تحلیل شده است (GAS, V/365). در تجزیه و تحلیلی که اینک انجام میگیرد، سعی شده است تا نقایص کار زوتر که بیشتر در اشکال و مقایسه کارهای ابن هیثم با فرم محاسباتی امروزی مشهود است، برطرف گردد. در اینجا راه حل ابن هیثم برای مسائل 1 و 4 به تفصیل، با نمادهای جدید بیان میشود.
مسأله 1: سهمی ACB مانند شکل 1 مفروض است. محور تقارن سهمی CJ است. سهمی را حول CJ دوران میدهیم. میخواهیم حجم حاصل از دوران یعنی V را حساب کنیم. ابن هیثم ثابت میکند که و W حجم استوانه حاصل از دوران مستطیل CB حول CJ است.
اثبات ابن هیثم به این صورت است:
مرحله اول ـ پارهخط CJ را به دو قسمت مساوی تقسیم میکنیم و نقطه وسط را E مینامیم. از E خطی موازی AB رسم میکنیم تا قوس CB از سهمی را در نقطه F و خط DB را در نقطه G قطع کند. از F خطی مانند IH به موازات CJ رسم میکنیم، قسمت هاشور خورده داخل سهمی را حول CJ دوران میدهیم، حجی که متناظر با قسمت هاشور نخورده داخل سهمی بر اثر دوران حول CJ تولید میشود، حجم باقیمانده داخلی مینامیم. عبارت «حجم باقیمانده خارجی» نیز معنی مشابهی دارد.
در این مرحله داریم:
= حجم باقیمانده داخلی حاصل از دوران V-
(1)
= حجم باقیمانده خارجی حاصل از دوران V+
(2)
مرحله دوم ـ حال فاصله EJ را به دو قسمت مساوی و فاصله CE را نیز به دو قسمت مساوی تقسیم میکنیم مانند شکل 2. L وسط CE و N وسط JE قرار دارد. مجدداً از نقاط N، E، L خطوطی به موازات AB رسم میکنیم تا قوش CB از سهمی را به ترتیب در نقاط R، F، O و خط BD را در S، G، M قطع کنند. از شکل 2 داریم:
=حجم باقیمانده داخلی V-
(3)
= حجم باقیمانده خارجی V+
(4)
باتوجه به اینکه ACB یک سهمی است، عددی مثبت مانند ه موجود است، بهطوری که فرمولهای (1) و (2) در مرحله اول به ترتیب به صورتهای (1) و (2) در میآیند: (َ1) و (َ2) در میآیند:
(َ1) = حجم باقیمانده داخلی V-
= حجم باقیمانده خارجی V+
(َ2)
و فرمولهای (3)و (4) در مرحله دوم به ترتیب به صورتهای (َ3) و (َ4) در میآیند:
= حجم باقیمانده خارجی V+
(َ4)
پس در مرحله n ام پس از اینکه CJ را به 2n قسمت مساوی تقسیم میکنیم، خواهیم داشت:
= حجم باقیمانده داخلی V-
(َ3)
= حجم باقیمانده خارجی V+
(َ4)
اکنون میگوییم: V باید مساوی باشد، زیرا اگر چنین نباشد، تنها دو حالت دیگر امکان دارد:
حالت اول:
در این حالت فرض میکنیم که
پس S مثبت است، حال در مرحله nام واضح است که
= حجم باقیمانده خارجی + حجم باقیمانده داخلی (مثلاً در مرحله اول در شکل 1، حجم حاصل از دوران قسمتهای هاشور نخورده طول CJ مساوی است با حجم حاصل از دوران مستطیل DE حول محور CJ، و درنتیجه مساوی است. به همین ترتیب در مرحله دوم شکل 2 حجم حاصل از دوران مستطیلهای هاشور نخورده حول محور CJ، مساوی با حجم حاصل از دوران مستطیل CM حول محور CJ است و درنتیجه برابر است با ).
پس از مرحلهای مانند m به بعد، با ریزتر کردن تقسیمات CJ، داریم:
(5) < S حجم باقیمانده داخلـی
(6) < S حجم باقیمانده خارجی
اکنون از (5) باتوجه به اینکه
داریم: (7) حجم باقیمانده داخلی V-
از (7) و (ً3) برای n>m داریم:
(8)
از (8) با در نظر گرفتن اینکه
W=ه(JB)2 (CJ) – ه ه(CJ)2
داریم: (9)
اکنون ابن هیثم با استفاده از فرمول
(k صحیح و مثبت است) که قبلاً به عنوان یک قضیه کمکی ثابت کرده است، از (9)، نامساوی زیر را به دست میآورد:
یعنی:
که محال است. این تناقض نشان میدهد که حالت اول ممکن نیست.
حالت دوم:
در این حالت مجدداً قرار میدهیم:
و از یک مرحله مانند m به بعد )6( برقرار است، اکنون مینویسیم:
< S حجم باقیمانده خارجی
درنتیجه: (10) + حجم باقیمانده خارجی از (10) و (ً4) برای n>m داریم:
و از اینجا داریم:
و درنتیجه:
بنابراین:
این تناقض نشان میدهد که حالت دوم نیز ممکن نیست، پس
و قضیه ثابت است.
البته با روش انتگرالگیری مدرن محاسبه W به صورت زیر است:
در شکل 3 معادله سهمی را طبق معمول به صورت
Y=a(r2-x2)
میگیریم و داریم:
(حجم حاصل از دوران مستطیل OD حول محور yها).
مسأله 2: حجم حاصل از دوران قسمت هاشور خورده در شکل 4 حول محور dT مساوی است با حجم استوانه قائم مستدیری که ارتفاع آن QT است و شعاع قاعده آن dB است.
T نقطهای است روی قوس CB از سهمی که در آن نقطه، مماس بر سهمی (خط L) با قاطع BZ موازی است و Q محل تقاطع عمود از نقطه T بر خط AB با قطعه ZB است.
اثبات ابن هیثم را برای مسأله 2 بیان نمیکنیم، ولی مناسب است که اثبات امروزی آن را بنویسیم که معلوم شود با فقدان شیوههای جدید ابن هیثم چه کار مهمی انجام داده است.
ضریب زاویه خط L عبارت است از -2ad درنتیجه معادله خط قاطع BZ عبارت است از: y=-2ad(x-r)
درنتیجه عرض نقطه Q عبارت است از:
(11) -2ad(d-r)=2ad(r-d)
اکنون با طریقه پوستههای استوانهای حجم حاصل از دوران قسمت هاشور خورده حول محور Qd عبارت است از:
(12)
از طرفی مطابق (11) داریم:
= -2ad(r-d) عرض نقطه T = ارتفاع استوانه = QT
a(r2-d2)-2ad(r-d)=a(r-d)2
درنتیجه حجم استوانه مورد بحث برابر است با
A(r-d)2 ه(r-d)2=هه(r-d)4
از اینجا و (12) مسأله ثابت میشود.
مسأله 3: حجم حاصل از دوران قسمت هاشور خورده در شکل 5، حول محور dT مساوی است با حجم استوانه قائم مستدیری که ارتفاع آن QT و شعاع قاعده آن dA است (T نقطهای است روی قوس CB از سهمی که در آن نقطه مماس بر سهمی (خط L) با قاطع AQ موازی است و Q محل تقاطع عمود از نقطه T بر خط AB با قاطع مزبور است).
مجدداً یادآور میشویم که مشابه راه حل امروزین مسأله 2، به آسانی میتوان نشان داد که QT=ه(r+d)2
درنتیجه حجم استوانه مورد بحث عبارت است از: هه(r+d)4
و در این مورد
مسأله 4: سهمی ACB مانند شکل 6 مفروض است، محور تقارن سهمی CJ است. قوس CB را حول JB دوران میدهیم، میخواهیم حجم حاصل از دوران یعنی V را حساب کنیم.
ابن هیثم ثابت میکند که
که در آن W حجم استوانه حاصل از دوران مستطیل CB حول JB است.
اثبات ابن هیثم به این صورت است که JB را به 2n قسمت مساوی تقسیم میکند.
(در شکل 6، n=2 و JK = KL = LM = MB)
واضح است که رابطه زیر برقرار است:
+ حجم قسمت باقیمانده داخلی در اثر دوران حول JB
(13) = حجم قسمت باقیمانده خارجی در اثر دوران حول JB
برای اثبات مسأله فوق، ابن هیثم قبلاً نامساویهای زیر را ثابت میکند:
(14)
(15)
برای اثبات این نامساویها ابن هیثم فرمولهای زیر را ثابت میکند:
(16)
لازم به تذکر است که برای اثبات هر یک از 4 فرمول فوق به فرمولهای ماقبل آن در (16) نیاز است و 3 فرمول نخستین قبل از ابن هیثم شناخته شده بود، ابن هیثم چهارمین فرمول را به منظور کمک به اثبات نامساویهای (14) و (15) برای اولین بار بهطور دقیق ثابت میکند. اثبات ابن هیثم بیشتر جنبه هندسی دارد و درواقع جایگزینی از فرمولهای (16) در طرف چپ نامساویهای (14) و (15) پس از بسط دادن آنهاست.
در شکل 6 داریم: = حجم باقیمانده داخلی V-
= حجم حاصل از دوران قسمت هاشور خورده حول محور JB
(17)
و چون CB یک قوس از سهمی است، میتوان نوشت:
(18)
و با توجه به اینکه
از (17) میتوان نوشت:
و اما KS=JC-RC
بنابراین (19)
LG=JC-IC
(20)
MH=JC-EC
(21)
از (19)، (20) و (21) داریم:
(22) = حجم باقیمانده داخلی V-
از طرفی
=حجم باقیمانده خارجی V+
پس:
(23) = حجم باقیمانده خارجی V+
در نتیجه باتوجه به اینکه فرمولهای (22) و (23) پس از تقسیم JB به 22 قسمت مساوی به دست آمده، ملاحظه میکنیم که پس از تقسیم JB به 2n قسمت مساوی (nهIN) داریم:
= حجم باقیمانده داخلی V-
(َ22)
= حجم باقیمانده خارجی V+
(َ23)
از (14) و (َ22) داریم:
(ً22) حجم باقیمانده داخلی V-
و از (15) و (َ23) داریم:
< حجم باقیمانده خارجی V+
باتوجه به W=هJC2.JB
و نیز (ً22) و (ً23) داریم:
(24) > حجم باقیمانده داخلی V-
(25) < حجم باقیمانده خارجلی V+
اکنون ابن هیثم فرض میکند که
و دو حالت در نظر میگیرد:
حالت اول:
در این حالت فرض میکنیم
درنتیجه s عددی است مثبت. پس یک m وجود دارد، بهطوری که ، پس برای n>m داریم:
(َ25) حجم باقیمانده داخلی
البته در (َ25) منظور از حجم باقیمانده داخلی متناظر با تقسیم JB به 2n قسمت مساوی است. از (َ25) داریم:
حجم باقیمانده داخلی V-
و این نامساوی متناقض با (24) است. این تناقض نشان میدهد که حالت اول ممکن نیست.
حالت دوم:
مجدداً فرض میکنیم
و یک m موجود است، بهطوری که برای هر n>m داریم:
(26)
حجم باقیمانده خارجی
البته در (26) منظور حجم باقیمانده خارجی متناظر با تقسیم JB به 2n قسمت مساوی است. از (26) داریم:
حجم باقیمانده خارجی V+
و این نامساوی متناقض با (25) است. این تناقض نشان میدهد که حالت دوم نیز غیرممکن است. پس ابن هیثم نتیجه میگیرد که
البته با نمادهای امروزی توسط انتگرالگیری حجم حاصل از دوران قوس BC از سهمی ABC حول محور xها (شکل 7) مساوی است با:
W=هه2r5
بنابراین:
مسأله 5: حجم حاصل از دوران قسمت هاشور خورده در شکل 8 حول محور ZB مساوی است با حجم استوانه قائم مستدیری که ارتفاع آن QB و شعاع قاعده آن فاصله نقطه T از خط ZB است (قابل ذکر است که در شکل 8 نقاط T، Z، B، Q، d و خط L و سهمی ACB مانند شکل 4 انتخاب شدهاند).
در اینجا اثبات ابن هیثم را برای این مسأله بیان نمیکنیم، ولی مانند مسأله 2 در مورد آن عمل میکنیم:
= مساحت هاشور خورده
مرکز نقل قسمت هاشور خورده را با (x0، x0) نمایش میدهیم، داریم:
درنتیجه فاصله مرکز ثقل قسمت هاشور خورده در شکل 8 از خط BZ (باتوجه به اینکه معادله خط BZ عبارت است از (y=2a d(r-x) مساوی است با
درنتیجه مطابق قضیه پاپوس حجم حاصل از دوران قسمت هاشور خورده، مطابق قضیه پاپوس حجم حاصل از دوران قسمت هاشور خورده، حول محور BZ (یعنی V) عبارت است از فاصله طی شده توسط مرکز ثقل پرب در مساحت هاشور خورده، یعنی:
(27)
باتوجه به اینکه فاصله T از خط BZ مساوی است با
و اینکه
پس حجم استوانه مورد بحث در صورت مسأله، مساوی است با
و بنابراین:
مسأله 6: حجم حاصل از دوران قسمت هاشور خورده در شکل 9 حول محور َAQ مساوی است با حجم استوانه قائم مستدیری که شعاع آن مساوی فاصله نقطه T و ارتفاع آن مساوی َAQ است. (در شکل 9 نقطه T و خط L و سهمی ACB مانند شکل 4 انتخاب شده اند، خطوط L و َAQ با هم موازی هستند و َTQ موازی محور سهمی است). مشابه مسأله 5 میتوان نشان داد که حجم استوانه مورد بحث مساوی با
و حجم حاصل از دوران قسمت هاشور خورده شکل 9 مساوی است.
موضوع دیگری که در اینجا بررسی میشود، مسألهای است به نام مسأله ابن هیثم که وی آن را در بخش 5 کتاب المناظر اثبات کرده است. قابل توجه است که این مسأله حدود 600 سال دانشمند را به خود مشغول کرده بود و نتوانسته بودند راه حل جدیدی برای آن به دست آورند و سرانجام در سده 17م ریاضیدانان از جمله هویگنِس (1629-1695م) روشهای جدیدی برای حل این مسأله یافتند.
مسأله چنین است: دو نقطه مانند A و B مفروض است (A نقطهای نورانی و B چشم ناظر) و یک سطح آیینهای مانند S داده شده است. مطلوب است تمام نقاط S بهطوری که نور از نقطه A به S برخورد کرده و از نقطه B بگذرد.
این مسأله در مورد آیینههای کروی و استوانهای به مسأله زیر منجر میشود:
دایرهای به مرکز O مفروض است. نقاط A و B داخل دایره (یا خارج آن) قرار دارند. مطلوب است تعیین همه نقاط مانند C روی دایره، بهطوری که داشته باشیم:
(28)
در شکل 10، A و B را داخل دایره فرض کردهایم و در اینجا میتوان تصور نمود که A نقطهای است نورانی، B چشم ناظر است و شعاعی که از A گذشته به سطح شفاف آیینه (که داخل کره یا استوانه فرض شده) برخورد کرده و به چشم ناظر در نقطه B رسیده، در نقه C به دایره (آیینه) برخورد کرده است. ابن هیثم ثابت کرده است که اگر نقاط B، O و A بر یک استقامت نباشند و OAهOB (در شکل فرض شده OA>OB و در بحث پایین نیز همین فرض شده است. حالت OA=OB قبل از ابن هیثم توسط بطلمیوس حل شده بود)، در این صورت (هوخندایگ، 108-109؛ نیز نک : شکل 11) اگر نیمساز زاویه َAOB را رسم کنیم تا دایره را در نقاط E و F قطع کند، قطرهایی که از A و B میگذرند، همراه با قطر EF دایره مزبور را به 6 کمان مانند شکل 11 تقسیم میکنند (کمانهای I تا VI). ابن هیثم ثابت کرده است که روی کمان II (بدون نقاط انتهایی E و J) دقیقاً یک نقطه C موجود است، به طوری که رابطه (28) برقرار است. همچنین روی کمان V دقیقاً یک نقطه (H وCهF ) موجود است، بهطوری که رابطه (28) برقرار است. روی کمانهای III و IV، نقطه C ای که در (28) صدق کند، وجود ندارد و سرانجام روی کمان VI (بدون نقاط انتهایی G و H) شمار Cهایی که در (28) صدق میکنند 1,0 یا 2 است و این شمار بستگی به مواضع A و B دارد. روش ابن هیثم برای اثبات این مسأله بسیار پیچیده، طولانی و دشوار است. به همین دلیل این روش را به رغم آنکه ــ بهویژه برای دوران ابن هیثم ــ یک کار بزرگ ریاضی بهشمار میرود، در اینجا میآوریم، ولی مناسب است بدانیم که با روشهای امروزی وجود نقطهای مانند C روی کمان II در شکل 11 که در (28) صدق کند، چگونه ثابت میشود. شرایط مسأله را در زیر شکل 12 به صورت ریاضی نوشتهایم. شرط لازم و کافی برای اینکه نقطه C:r (Cos t, Sin t) در )28( صدق کند. این است که خط OC نیمساز زاویه BCA باشد و این معادل است با اینکه تساوی )29( در زیر برقرار باشد.
(29)
(. در (29) هکمان ضرب داخلی اقلیدسی است و همان نُرم معمولی اقلیدسی است) و این معادل است با اینکه
(30)
ولی همیشه یک موجود است که در (30) صدق کند، زیرا اگر طرف چپ (30) را با (t) ه نمایش دهیم و طرف راست آن را با (t) ه نمایش دهیم، ملاحظه میکنیم که
(30)
ولی همیشه یک موجود است که در (30) صدق کند، زیرا اگر طرف چپ (30) را با (t) ه نمایش دهیم و طرف راست آن را با (t) ه نمایش دهیم، ملاحظه میکنیم که
پس تابه پیوسته ه-ه در نقطه صفر مثبت و در نقطه منفی است پس در نقطهای بین صفر و مساوی صفر است. یعنی یک موجود است، بهطوری که ه(t0)-ه(t0)=0 یعنی ه(t0)=ه(t0) یعنی (30) برای t=t0 برقرار است، درنتیجه (29) که با (30) معادل است، برای C=r(Cost0, Sin t0) برقرار است. درنتیجه وجود نقطهای مانند C روی کمان II در شکل 11 که در (28) صدق کند، ثابت میشود. توجه شود که برای رسیدن به یک اثبات سریع برای وجود C که در (28) صدق کند، کافی است ملاحظه کنیم که
واضح است که (30) تمام جوابهای ممکن مسأله را برای 0هtهه به دست میدهد. کتاب المناظر ابن هیثم که مسأله فوق در آن حل شده، بر مبنای کتابهای نور اقلیدس و بطلمیوس نوشته شده، ولی همانطور که به عنوان نمونه در مسأله بالا آمده، این کتاب شامل مطالب جدید و اثباتهای نوست. کتاب مزبور توسط یوهانس کپلر به کار گرفته شده است. ابن هیثم عقیده بطلمیوس و اقلیدس را که اشعه نور از چشم به طرف شیء میرود، رد کرده و جهت آن را از شیء به طرف چشم میداند. ابن هیثم در این کتاب ثابت می کند که شعاع تابش و شعاع انعکاس و خط عمود بر سطح آیینه در نقطه برخورد شعاع به آیینه در یک صفحه واقعند و با عمود مزبور زوایای مساوی میسازند (نک : شکل 13 که AO شعاع تابش، OB شعاع انعکاس، O محل برخورد آنها با آیینه، OL عمود بر آیینه در نقطه O است. اولاً OB, OA و OL در یک صفحه واقعند، ثانیاً ). از تحقیقات و بررسیهای نسخههای خطی باقیمانده از ابن هیثم که تاکنون انجام شده، معلوم میشود که ابن هیثم در نجوم بیشتر به مسائل فرعی و حل آنها که البته از اهمیت برخوردار هستند (از جمله تعیین دقیق سمت قبله و ارتفاع ستارگان)، پرداخته است که همپایه با شاهکارهای او در ریاضیات و فیزیک (نور) نبوده است.
مآخذ: ابن ابی اصیبعه، احمدبن قاسم، عیون الانباء، به کوشش آوگوست مولر، قاهره، 1882م/1299ق؛ ابن عبری، غریغوریوس بن هارون، تاریخ مختصر الدول، بیروت، 1958م؛ ابن هیثم، حسن بن حسن، الشکوک علی بطلمیوس، به کوشش عبدالحمید صبره و نبیل شهابی، قاهره، 1971م؛ بخیت، محمد عدنان، فهرس المخطوطات العربیه المصوره، اردن، 1406ق/1986م؛ بیهقی، علی بن زید، تتمه صوان الحکمه، به کوشش محمد شفیع، لاهور، 1351ق؛ اعلام؛ سارتن، جورج، مقدمه بر تاریخ علم، ترجمه غلم حسین صدری افشار، تهران، 1350ش؛ شهرزوری، محمدبن محمود، نزهه الارواح، به کوشش سید خورید احمد، حیدرآباد دکن، 1396ق/1976م؛ صاعد اندلسی، طبقات الامم، به کوشش لویس شیخو، بیروت، 1912م؛ صبره، عبدالحمید، مقدمه بر الشکوک (نک : هم ، ابن هیثم)؛ قفطی، علی بن یوسف، تاریخ الحکماء، اختصار زوزنی، به کوشش یولیوس لیپرت، لایپزیک، 1903م؛ نظیف بک، مصطفی، الحسن بن هیثم، قاهره، 1492م؛ نیز:
Ahlwards, GAL; GAS; Hogendijk, J. P., Ibn al Haytham's Completion of the Conics, Berlin, 1985; Khalidov; Loth, Otto, A Catalogue of the Arabic Manuscripts in the Library of the India Office, Leipzig, 1877; Sabra, A. I., »Ibn al Haytham«, Dictionary of Scientific Biography, New York, 1972, vol. VI; Schoy, Carl, »Abbandlung des al-Hasan ibn… al-Haitam… über die Bestimmung der Richtung der Qibla«, ZDMG, Leipzig, 1921, vol. LXXV; Schramm, Mathias, Ibn al-Haythams Weg zur Physik, Wiesbaden, 1963; Widemann, E., Gesammelte Schriften zur arabisch islamischen Wissenschaftsgeschichte, Frankfurt, 1984; Voorhoeve.
جلد: 5
نویسنده: صادق سجادی علیرضا جعفری نائینی
شماره مقاله:1917